

OCR Computer Science AS Level

1.4.2 Data Structures
Intermediate Notes

www.pmt.education

Specification

1.4.2 a)

● Arrays
● Records
● Lists
● Tuples

1.4.2 b)

● Stack
● Queue

www.pmt.education

List Operations Example Description

isEmpty() List.isEmpty()
>> False

Checks if the list is empty

append(value) List.append(15)
>>

Adds a new value to the
end of the list

remove(value) List.remove(23)
>>

Removes the value the first
time it appears in the list

search(value) List.search(38) Searches for a value in the

www.pmt.education

Arrays, Records, Lists, and Tuples
Arrays
An array is an ordered, finite set of elements of a single type. A 1D (one-dimensional)
array is linear. Arrays are always taken as zero-indexed, unless stated otherwise.
Elements are selected using the syntax: oneDimensionalArray[x], where x is the
position of the element.

A two-dimensional array can be visualised as a table or spreadsheet. When finding a given
position in a 2D array, you first go down the rows and then across the columns. Selecting
elements requires the following syntax to be used: twoDimensionalArray[y,x]

A three-dimensional array can be visualised as a multi-page spreadsheet and can be
thought of as multiple 2D arrays. Selecting an element in a 3D array requires the following
syntax to be used: threeDimensionalArray[z,y,x], where z is the array number, y
is the row number and x is the column number.

Records
A record is a row in a file and is made up of fields. Records are used in databases.
Each field in a record can be identified using the syntax: recordName.fieldName. First,
however, a record must be created by creating a variable. The syntax below shows the
variable ‘fighter’ being created from a record structure called ‘fighterDataType’:
fighter : fighterDataType
Its attributes can then be accessed, using the following syntax:
fighter.FirstName

Lists
A list is a data structure consisting of a number of ordered items where the items can
occur more than once. Items in lists can be stored non-contiguously and can be of more
than one data type, which is not possible in an array.

Manipulating lists

>> False list.

length() List.length()
>> 7

Returns the length of the
list

index(value) List.index(23)
>> 0

Returns the position of the
item

insert(position, value) List.insert(4,25)
>>

Inserts a value at a given
position

pop() List.pop()
>>12

Returns and removes the
last value in the list

pop(position) list.pop(3) Returns and removes the
value in the list at the given
position

Tuples
An ordered set of values of any type is called a tuple. Tuples are immutable , which means
elements cannot be added or removed once a tuple has been created. Tuples are
initialised using regular brackets and elements are accessed in the same way as elements
in an array.

Stacks and Queues
Stacks
A stack is a last in first out (LIFO) data structure. Items can only be added to or removed
from the top of the stack. Stacks are used to reverse an action , such as to go back a page
in web browsers and in ‘undo’ buttons. Stacks are implemented using a pointer which
points to the top of the stack, where the next piece of data will be inserted.

Manipulating a stack

Stack Operations Example Description

isEmpty() Stack.isEmpty()
>> True

Checks if the stack is
empty.

push(value) Stack.append(“Nadia”)
>>
Stack.append(“Elijah”)
>>

Adds a new value to the end
of the list.

peek() Stack.peek()
>> “Elijah”

Returns the top value from
the stack.

www.pmt.education

pop() Stack.pop()
>> “Elijah”

Removes and returns the
top value of the stack.

size() Stack.size()
>> 2

Returns the size of the stack

isFull() Stack.isFull()
>> False

Checks if the stack if full
and returns a Boolean
value.

Queue
A queue is a first in first out (FIFO) data structure; items are added to the end of the queue
and are removed from the front of the queue. Queues are used in printers to store print
jobs, keyboards and simulators.

In a linear queue, items are added into the next available space, starting from the front.
Items are removed from the front of the queue. Queues make use of two pointers: pointing
to the front and back of the queue.

Manipulating a queue
The highlighted boxes in the example below show the front of the queue.

enQueue(Task3) // enQueue(item) is how items are added to a queue

Position 0 1 2 3 4 5

Data Task1 Task2 Task3

deQueue() // deQueue(item) is how items are removed from a queue

Position 0 1 2 3 4 5

Data Task2 Task3

Positions from which data has been removed cannot be used again, making a linear
queue an ineffective implementation of a queue.

Circular queues are coded so that once the queue’s rear pointer is equal to the maximum
size of the queue, the queue can loop back to the front and store values here, provided
that there is empty space. Therefore, circular queues use space more effectively, although
they are harder to implement.

www.pmt.education

Below is an example illustrating how the rear pointer in a circular queue works:

enQueue(Task6)

Position 0 1 2 3 4 5

Data Task3 Task4 Task5 Task6

rearPointer : 5
maxSize : 5

enQueue(Task7)

Position 0 1 2 3 4 5

Data Task7 Task3 Task4 Task5 Task6

rearPointer : 0
maxSize : 5

Queue Operations Example Description

enQueue(value) Queue.enQueue(“Nadia”)
>>
Queue.enQueue(“Elijah”)
>>

Adds a new item to the end
of the queue.

deQueue() Queue.deQueue()
>>

Removes the item from the
front of the queue. .

isEmpty() Queue.isEmpty()
>> False

Checks if the queue if empty

isFull() Queue.isFull()
>> False

Checks if the queue is full

www.pmt.education

